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Abstract—Reach-avoid reinforcement learning is a promising
approach for computing low-level control policies for nonlinear
dynamical systems with complex safety and goal specifications.
However, leveraging this framework for manipulation tasks
presents a fundamental challenge: the need to reason about
safety with respect to all objects in the environment. In cluttered
scenes, defining the state to include all objects is computa-
tionally intractable; moreover, many objects induce different
constraints depending on their semantic properties (e.g., soft
vs. fragile objects), making scalable specification of the safety
constraints challenging. Our key insight is that only a subset
of entities in the scene are task- and safety-relevant during
interactive manipulation. We therefore propose parameterizing
our safe control policies with a significantly smaller subset of
task- and safety-relevant entities, which we infer online during
interaction. Offline, we pre-train a parameterized safety policy
by considering diverse combinations of task objectives, safety-
relevant objects, and safety constraints. Online, we explore a suite
of methods—from hand-designed heuristics to vision-language
models (VLM)—to dynamically update the task- and safety-
relevant entities over the deployment horizon. We evaluate our
approach in simulation, wherein a Franka Panda manipulator
must dynamically, but carefully, pull a target object from a
stack, while accounting for nearby clutter, and safely place it
into a goal region. We discover a tradeoff between the robot’s
lower-dimensional state space, environment complexity, and the
overall ability to safely succeed at the task. Furthermore, we find
that the semantic priors within VLMs can enable these models
to select relevant objects—and their corresponding constraint
types—more effectively than hand-designed heuristics, enabling
safer and more performant policies.

I. INTRODUCTION

For complex manipulation tasks in cluttered environments,
the full state space and the comprehensive set of task and
safety constraints can be prohibitively large, rendering policy
learning both intractable and inefficient. However, for a spe-
cific task, only a subset of objects and constraints, determined
by the task description and the metric and semantic properties
of the environment, are typically relevant, while others can
be ignored without compromising performance or safety. For
example, when sliding a book out from beneath a stack of
books, the relevant objects may include the stack itself and
any fragile objects nearby, such as a cup of coffee that must
be avoided. In contrast, interactions with soft objects, like toys,
can be safely permitted. Furthermore, as the task progresses
and the book is moved along the table, the set of relevant
objects may evolve dynamically. It is crucial for the policy to
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Figure 1: Dynamic manipulation task: The robot dynamically, but carefully,
slides a target object from under another object, and moves it to a goal region
while avoiding safety-critical objects on a cluttered table.

adapt accordingly to account for these changes.

This work aims to learn safe policies for interactive and dy-
namic manipulation tasks in cluttered environments. Hamilton-
Jacobi Reachability (HJR) analysis is a prominent method for
ensuring safety for dynamical systems that guarantees con-
straint satisfaction by finding an optimal solution to a reach-
avoid problem. However, it suffers from scalability issues
as the dimension of the state space increases. Recent works
[141 [3L [16], take inspiration from reinforcement learning-based
approaches to find approximate solutions to the reach-avoid
problem in higher dimensions by utilizing a time-discounted
reach-avoid bellman update (DRABE [16]) with contraction
mapping properties. Despite its promise to scale, leveraging
this framework for dynamic and interactive manipulation tasks
is quite challenging due to combinatorial increase in the num-
ber of interactions and contact types that need to be considered
as the environment becomes more complex. Additionally, most
works focus on collision avoidance and do not consider a safe
dynamic interaction problem, which is a key consideration in
dynamic manipulation tasks. We train a policy that considers
dynamic interactions between a subset of task-relevant and



safety-critical objects and constraints, significantly reducing
the state space considered during safety analysis.

In this work, we propose an approach for safely performing
dynamic and interactive manipulation tasks using parame-
terized safe policies that condition on a subset of dynami-
cally changing relevant objects and corresponding task and
safety constraints, by inferring them online during execution.
Offline, we train a parameterized safe policy, using reach-
avoid reinforcement learning (RARL), in a reduced state
space, considering diverse combinations of task and safety
constraints. Online, we explore heuristic-based and vision-
language-based methods to infer relevant objects and con-
straints. We show that while heuristic-based methods such as
k-nearest neighbor aid in identifying relevant objects based
on their metric properties, Vision-Language models (VLMs)
are proficient in identifying objects and constraints based on
semantic properties. We perform experiments in simulation
on a challenging task of dynamically, but carefully, pulling a
target object from under a stack and moving it to a goal region
while avoiding safety-critical objects on a cluttered table. Our
results demonstrate that DRABE policies outperform vanilla
RL approaches and have fewer dynamic safety violations.
Furthermore, we observe that task- and safety-relevant param-
eterized safety policies perform comparable to or outperform
policies trained with privileged full-state information.

The key contributions of this work are as follows:

o A scalable approach for learning safe policies for dy-
namic and interactive manipulation tasks in clutter using
reach-avoid reinforcement learning.

« An offline training pipeline for learning a parameterized
policy that considers a reduced set of objects and diverse
combinations of task and safety constraints.

o Online, we explore heuristic-based and vision-language
based methods for identifying relevant objects and con-
straints based on both metric and semantic properties.

e Through results in simulation on a challenging dynamic
and interactive manipulation task, we demonstrate that
task- and safety-relevant dimensionality reduction enables
scalable and efficient policy synthesis while maintaining
safety guarantees, paving the way for deploying safe
manipulation policies in unstructured environments.

II. RELATED WORK

Reachability-based Safe Control Synthesis. Hamilton-
Jacobi reachability analysis [3, 21, [23]] provides theoretical
formulations for finding the solution to nonlinear reach-avoid
control problems by minimizing the worst case (minimum over
time) loss. Compared to approaches that minimize the cumula-
tive loss over time [7, 4], HIR analysis provides rigorous safety
assurances, ensuring that the system avoids unsafe states under
worst-case scenarios. However, HIR becomes computationally
intractable as the dimension of the state space increases [10].
Recent methods [[14} 13} [16] take inspiration from RL-based
approaches [27, 131] to extend reachability analysis to higher
dimensions using a discounted formulation of the reach-avoid

bellman equation. Leveraging HJR analysis for learning safe
policies in dynamic, cluttered manipulation remains underex-
plored due to the high dimensionality of complex multi-body
interactions. Our key contribution is reducing this complexity
by focusing only on task- and safety-relevant constraints,
identified through both semantic and metric properties.

Safe Control for Robotic Manipulation. Impedance and null
space control are widely used to ensure compliant interactions
in robotic manipulation. Impedance control modulates stiffness
and damping properties to enable safe and adaptive interac-
tions with the environment [15} [1]], while null space control
allows secondary objectives like collision avoidance to be
incorporated without interfering with primary tasks [26} [11].
In contrast, contact-aware controllers explicitly reason about
contact interactions to keep interaction forces below a safety
threshold [18l [36]]. Recent work has focused on learning
contact-aware complaint controllers using expert demonstra-
tions [25, 2] and RL [34} [35, 22]]. Our work builds on these
efforts by enabling contact-aware control through reachability-
based methods in cluttered environments.

Semantic-aware Safe Planning using VLMs. Recent works
have explored incorporating semantic safety into task planning.
[29] integrate safety prompts in the code-as-policies [19] setup,
while [32] use LLMs to decompose high-level tasks into
subtasks and verify them against LTL specifications. Other
approaches infer user preferences through demonstrations and
active queries [30]. Semantic constraints derived from VLMs
have been used for planning, with simulators verifying fea-
sibility [17, 9]. However, these approaches primarily focus
on quasi-static tasks without long-horizon reasoning. Most
relevant to our work is [8], which incorporates dynamic con-
straints within a formal safety framework. However, it requires
manually designing barrier functions for each constraint type,
and the policy accounts for all constraints simultaneously,
making it impractical for cluttered environments. Our ap-
proach leverages RARL to learn safety value functions that
can be solved for both liveness and safety based on a subset
of relevant task and safety constraints.

III. BACKGROUND
A. Hamilton-Jacobi Reachability Analysis

Hamilton-Jacobi Reachability (HJR) analysis provides a
formal approach for computing safe policies that guaran-
tee constraint satisfaction by finding an optimal solution to
a reach-avoid problem. Consider a discrete-time dynamical
system S;11 = f(S¢, at), where t is the current time step,
st € SCR" ael CR™, U is compact and dynamics
f are bounded and Lipschitz continuous. Target set 7 C S
describes reach states that satisfy {s : I(s) > 0} and failure
set F C S describes avoid states that satisfy {s : g(s) < 0}.
T and F are closed sets and [(s), g(s) : s — R are Lipschitz
continuous functions. The safety problem is to find the reach-
avoid set, RA(T; F), which is the set of states from which a
controller can drive the system to 7 while avoiding F at all
times t. It was demonstrated in [[14] that states belonging to the



Offline: Parameterized Reach-Avoid RL

s=[{ Y &1

‘ — # relevant objects

Reach-Avoid RL A

Failure set F

Target set 7 mf‘x rtnzlgl d(7—’ ]:)

Goal reaching

Interaction safety Semantic safety K j

Online: Relevant object and constraint selection

Objects:

Blue mug, toy, teapot,
supplement, android, ..
Prompt:
Find the top-

=P x relevant
objects and
corresponding
semantic
constraints

Semantic
constraints

[ Relevant
objects

D Fragile
<No contact>
—> Fragile -
<No contact>
. a
Soft
<Soft contact>

Constraint types:
Frac e:

<No co

Figure 2: Method overview: Offline (left), we train a parameterized policy using reach-avoid reinforcement learning for a
user-specified number of relevant objects and a diverse combination of task and safety constraints. Online (right), the relevant
objects and task and safety constraints are inferred using vision-language-based or other heuristic-based methods, and used by

the pretrained policy to execute the next action.

set RA(T; F) satisfy V(s) > 0, where V (s) is the solution
to the following fixed-point Reach-Avoid Bellman equation
(RABE):

V(s) =min [g(s),max (l(s)ggg V(f(s, a)))} €))

V(s)>0& se RA(T; F)

It is important to note that, unlike the Bellman updates in
dynamic programming based approaches [6]], (T) does not have
a time-discounting term, thus it does not induce a contraction
mapping and cannot converge to a fixed point using value
iteration.

B. Reach-Avoid Reinforcement Learning (RARL)

Based on time-discounting in temporal difference learning
[27] and Q-learning [31] based methods, [14] introduced a
time-discounting term in RABE (), thus inducing contraction
mapping in value function learning, which was extended to
the reach-avoid setting and deep Q-learning by [16]. The
Discounted Reach-Avoid Bellman Equation (DRABE) [16]]
can be written as:

V(s) =y min [g(s), max (l(s), 21615 V(f(s, a)))}

+ (1 —~) min (I(s), g(s)) )

where ~y is the discount factor, which can be interpreted as the
probability of episode continuation.

IV. METHOD

An overview of our proposed approach is shown in Fig. ]
We consider the task of dynamic and interactive manipulation
in cluttered tabletop environments. In this section, we first
describe the problem setup in Sec. our approach for
training parameterized safe policies in Sec. [[V-B] and finally
discuss different methods for online identification of relevant
objects and constraints in Sec. [V-C

A. Problem setup

For a robot manipulation task in a tabletop cluttered envi-
ronment as shown in Fig. [T} the full state of the system is

represented as s = [sPF 59 ... 8] € S where S is the full

state space. sE = [xFE XFE] is the state of the end-effector
where xPF € R3 is the cartesian position and %XFF € R3 is the
cartesian velocity. The state of each object is represented as
s? = [x?,%9],4 € {1,..., N} where N is the total number of
objects on the table. Robot actions are represented as aff =
AxFE ¢ R3, the cartesian displacement of the end-effector.
Target set 7 = {s : I(s) > 0} is the set of all states that satisfy
all task objectives such that I(s) = min(li(s),...,l,(s))
where p is the number of task objectives. Failure set F =
{s : g(s) < 0} is the set of all states that violate any of
the failure constraints such that g(s) = min(g1(s), ..., g4(s))
where ¢ is the number of safety constraints. For a given task,
at a certain time step, a subset of objects and constraints
might be relevant. The relevant state space is represented as
Srel = [SEE, s, .. vS(z)v,l l] where N, is the number of relevant
objects, the relevant target set Tri = {Sre : [™(spe) > 0}
where ™! (1) = min (I (sper), - - - l;eril (sre1)) and the relevant
failure set Frei = {Swel : g™ (swe1) < 0} where g™ (sp) =
min(gi (Seer), - - - 5 95 (Sret))- Pret and grr are the number of
relevant task and safety constraints, respectively.

B. Offline Parameterized Safe Policy Learning

We utilize Deep Deterministic Policy Gradient (DDPG) [20]
as our reinforcement learning framework to learn a parameter-
ized safe policy in continuous action spaces. The Q-function
update is modified to the discounted reach-avoid formulation
(). Suppose Q4 is the Q-network, s the policy network,
and Qg,,, and py,,, are the target Q-network and target policy
networks respectively. Given a sample (s, a,r, s’,d) from the
replay buffer D, the Mean-squared Bellman Equation (MSBE)
in DDPG is as follows:

LoD = B K%(& 0)-

)|

where r = min(l(s),g(s)) is the reward and d indicates
whether state s’ is terminal. The Discounted Reach-Avoid



Image 2

Figure 3: Sequence of images input to Dynamic-VLM for relevant object
selection. The images are annotated with object bounding boxes as well as
the past trajectory (black arrow).

Bellman Error for the DDPG algorithm can be written as:

L(o, D = E
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In cluttered environments, the number of relevant objects
for a given task is typically much smaller than the total
number of objects in the scene, Ny < N. We start by
choosing an appropriate value for NV = k based on task
requirements. Let the state space that encompasses k£ objects
and the robot be represented as Sy, and let T, and Fy, represent
the corresponding sets of all possible distinct task and safety
constraints. For a certain subset of objects and their semantic
properties, a different set of constraints might be relevant. For
example, consider the scenario where k = 1 and N = 2, where
there are two objects (a toy and a coffee cup) on the table,
and one is selected at a time. The relevant safety constraints
are g; (soft contact for the toy) and gs (collision avoidance
for the coffee cup). Since the relevant object is unknown at
runtime, we train a parameterized policy that adapts to both
constraints based on the selected object. During training, for
each episode, the initial state of the system is sampled from Sy,
and all combinations of constraints are sampled from 7y X Fj.
A policy trained in Sy is denoted as 7%,_, where 0 is the
parameterization of the policy with constraints from the set
77€ X fk.

C. Online Relevant Object and Constraint Inference

For a given task, we perform relevant object and constraint
selection based on two types of object attributes: metric and
semantic. Metric attributes include kinematic and dynamic
object properties, such as position, velocity, and mass. Seman-
tic attributes encompass intrinsic and contextual properties,
such as material, color, texture, and affordance. To synthesize
performant as well as safe policies, it is essential to consider
both sets of attributes for the interacting objects.

Online Relevant Object Selection: We explore three
techniques for selecting relevant objects in a scene: Static-
kNN, Dynamic-kNN and Dynamic-VLM. Static-kNN employs
the k-nearest neighbor algorithm to select the top-k nearest
objects at the beginning of each episode, with this selection
remaining fixed for the duration of the rollout. In contrast,
Dynamic-kNN recalculates the k-nearest objects at specified
intervals during the policy execution. Notably, both of these
techniques rely solely on the metric properties of the objects
to identify relevant ones. Dynamic-VLM, on the other hand,

® uses a vision-language model to choose relevant objects based

on both metric and semantic features. At a certain time step
t, Dynamic-VLM takes as input a sequence of past images
Li_ne, (Fig. E[), the names of all N objects in the scene
O = {0;}Y,, the task prompt P and the number of relevant
objects to select [V and outputs the set of relevant objects
Ora = {0;} fV:ei Each image is annotated with object bounding
boxes and names as shown in Fig. 3] Additionally, the path
followed by the end-effector [x5E, ... xFE] up to the current
time t is projected and overlaid on the image. We use GPT-
40 as our vision-language model and leverage its structured
output feature to constrain the output to the provided set of
object names O = {o;} ;. Dynamic-VLM selects objects
based on their metric properties such as proximity (objects
which are more likely to come on contact), as well as their
semantic properties (fragile objects are safety critical, whereas
durable objects can be ignored).

Constraint Selection: Given a task description and the
current scene, we use a vision-language model to identify
relevant constraints 7, Fre; from the full sets of valid con-
straints 7, F. We exploit the semantic reasoning capabili-
ties of VLMs to identify constraints for objects and object
pairs. To enable that, we first convert the set of geometric
constraints 7, F to semantic constraints 7™, F5™ in nat-
ural language. For instance, the relative velocity constraint
that allows soft contacts between two interacting objects
9(Sbook Stoy) = € — ||Xbook — Xtoy|| can be semantically written
as ¢*™(<book>, <toy>) = <soft contact>. We name
our VLM-based constraint selection method, ContraintVLM,
and task it to identify the semantic safety constraints for all ob-
ject pairs such that ContraintVLM(o;, 0;, F*™) = ¢*™(0;, 0,)
where 0;,0; € O and ¢*™ € F**™. Once the set of
semantic constraints are selected by the VLM, they can be
converted back to their geometric formulations and utilized
by the parameterized policy. The contraints are identified at
the beginning of each episode (f = 0) and kept fixed for the
remainder of the rollout.

V. EXPERIMENTAL SETUP

We design our experiments to answer the following research
questions:

e Q1: Does the discounted reach-avoid formulation of the
RL objective help learn safe policies that consider safe
dynamic interactions?

o Q2: In cluttered tabletop manipulation environments, can
dimensionality reduction techniques that identify relevant
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Figure 4: Comparison of success rates and top box safety violations between
Vanilla-RL and RARL across varying numbers of cluttered objects on the
table.

safety-critical objects yield safe policies while preserving
performance?

e Q3: Can VLMs effectively infer semantic safety criteria
from image observations and semantic descriptions of the
task?

Task description. We consider a tabletop manipulation setting
where the robot must interact with everyday objects such as
cereal boxes, porcelain mugs, stuffed toys, and more (Fig. .
To test the dynamics-aware safety properties of our approach,
we specifically instantiate a challenging dynamic task, where
the robot is required to dynamically, but carefully, pull a cereal
box from under another cereal box on a cluttered tabletop, and
safety place it in a goal region. We simulate robot and environ-
ment dynamics with MuJoCo [28] and use the Google Scanned
Objects Dataset [[12) 13| [33]] to simulate everyday objects in
the table arena defined in Robosuite [37]. The full state for
this task is as follows: s = [sEE g0t g0 g0 9], where
sPot g the state of the bottom cereal box, s°°P is the state of
the top cereal box and s is the state of the i object in clutter
on the table. N is the total number of cluttered objects on the
table, that is, in addition to the two cereal boxes. We denote
N as the number of relevant cluttered objects, which is in
addition to the two cereal boxes, that are always considered
relevant since they are essential to the task.

Target and failure set. The target set 7 for this task
is defined by the following task objectives: 1) the bottom
cereal box should be completely slid out from under the

top cereal box Ii(s;) = [[x — x{'P|| — df,eqr 2) the
bottom cereal block is slid to a goal region near the end
of the table lx(s;) = d2 . — X — x&2||. For the task

to be completed, both constraints must be satisfied such that
I(s¢) = min(l1(s¢), l2(s¢)) > 0. The failure set F is comprised
of the following safety constraints: 1) the top cereal block
should not be aggressively displaced from its initial position
Gayn(8t) = d3 o — |78 — xR ||, for instance, the top cereal
box should not be flipped over. This constraint captures the
dynamic interactions between the bottom and top cereal boxes,

which is a key consideration for dynamic manipulation tasks,
2) the bottom cereal box should not make contact with any
fragile object gnaa(s:) =[x — x9|| — dj g This is a
hard collision avoidance constraint. However, since this is
a dynamic task (not quasi-static), long-horizon reasoning is
required to avoid contacts, 3) the bottom cereal box should
only make soft/gentle contacts with non-fragile/soft objects in
clutter gsoe(s¢) = diky, — %5 — x9||. This is a relative ve-
locity constraint, which again requires long-horizon reasoning,
so that the cereal box can slow down before making contact

with the object.

Baselines. To answer Q1, we compare the performance
of the reach-avoid safety policy against vanilla DDPG with
Mean-squared Bellman update. We call this baseline Vanilla-
RL. To answer Q2 and Q3, we train a policy with full-
state privileged information (Nyg = N) and compare its
performance with our reduced state policies using different
relevant object selection techniques (Sec. [[V-C). Furthermore,
we analyze the effect of the choice of Ny for varying number
of total objects N. To answer Q3, we compare the performance
of ConstraintVLM, which leverages semantic information to
identify safety constraints, against hand-designed conservative
heuristics.

Training Details. For policy learning, both RARL and
Vanilla-RL use the same target and failure sets, however,
Vanilla-RL uses the traditional expected sum of rewards
formulation while RARL uses the min-over-time formulation
as described in Sec. Both methods are optimized via
DDPG [20] and have the same model architecture and training
hyperparameters (for details refer to Appendix [A). Both actor
and critic networks are three-layer MLPs, each with 256 units
and ReLU activation. Wall time for training is around 15 hours.
The policies are trained using one NVIDIA RTX A6000 GPU.

VLM for Dimensionality Reduction and Constraint syn-
thesis. We use GPT-4o [24] as the vision-language model
for our experiments. During execution, Dynamic-kNN and
Dynamic-VLM are queried every four timesteps to update the
relevant object set. Images taken at previous two queries are
appended together as shown in Fig. [3| overlaid with bounding
boxes and past trajectory, and sent as input to Dynamic-
VLM. ContraintVLM is queried once at the beginning of
each episode to get the constraint types. Full prompt for
object selection is provided in Appendix [B| and for constraint
synthesis is provided in Appendix

VI. SIMULATION RESULTS

A. RARL generates safer control policies that consider safe
dynamic interactions

Methods. We train separate policies for different number of
cluttered objects on the table (N = 1,2, 3,4, 5,6) using both
Vanilla-RL and RARL. We evaluate these policies in the same
setting as during training, i.e. with the same number of total
objects. All above policies are trained considering the target set
T explained in Sec.[V]and failure set consisting of 1) dynamic
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Figure 5: Comparing success rates of Static-kNN vs. Dynamic-kNN for
different values of Ny and N.

safety constraint for top cereal box (gayn), and 2) no collision
constraint between the bottom cereal box and all objects in
clutter (gharq)-

Metrics. To compare the performance of RARL vs. Vanilla-
RL policies, we consider the following metrics: 1) Success
rate (%), and 2) Safety violation rate (%). We report average
numbers across 2000 rollouts.

Results: Vanilla-RL vs. RARL. Figure [4] compares the
success rates of Vanilla-RL and RARL for varying number of
cluttered objects (V) on the table (solid lines). We note that
RARL consistently outperforms Vanilla-RL. Furthermore, as
the number of objects (/V) increases the performance of both
methods deteriorates. This is because, as the dimensionality of
the state space increases, without increase in the model size,
policy learning using RL becomes increasingly challenging.
The two failure modes in these experiments are: 1) top cereal
box leaving the safety set ggyn(s;) < O due to dynamic
interactions with the bottom cereal box, and 2) collision of
the manipulated (bottom) cereal box with any of the obstacles
on the table ghua(s:) < 0. Figure {4 plots the rate of safety
violation of the top cereal box gayn(s:) < O (dotted lines),
which is a percentage of the total rollouts. We observe that
RARL consistently has much lower constraint violations,
showing the strength of this method for effectively handing
dynamic interactions.

B. Dimensionality reduction techniques yield safe policies
while preserving performance by identifying relevant
safety-critical objects.

Methods. We compare various dimensionality reduction
techniques (Sec. [V-C) against policies trained with full-state
privileged information (N, = NN). Additionally, we analyze
policy performance across varying choices of N in environ-
ments of different complexity NN. To achieve this, we train
a set of policies with different capacities Ny = 2,3,4,5,6
and test them in environments with different complexities
N = 3,4,5,6. All above policies are trained with the target
set 7 defined in Sec. [V] and a failure set comprising 1)

Il Success 3 Collision (unselected)  HEE Collision (selected)

=3 Top box O0OB
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Figure 6: Percentage success and failure for Static-kNN vs. Dynamic-kNN.
The three failure scenarios are 1) top block out of safety bounds (OOB), 2)
collision with unselected objects, 3) collision with selected (relevant) objects.
Results are presented for N = 6.

dynamic safety constraints for the top cereal box (gqyn), and
2) no-collision constraints between the bottom cereal box and
all clutter objects (gnhara). We call this a conservative failure
set F™ and the trained policy is a conservative policy
wﬁ\‘}:fer, where all NV, objects are considered fragile (no-contact
constraint).

Metrics. We evaluate the performance of different relevant
object detection techniques using the following metrics: 1)
Success rate (%), 2) Safety violation rate (%), 3) Rate of col-
lision with unselected objects i.e. objects that were considered
irrelevant. The last metric is used to infer the proficiency of
each of the object selection techniques at choosing the correct
relevant object.

Results: Impact of dimensionality reduction for varying
N in environments of varying complexity N, assuming
uniform semantics. We consider the scenario where all
objects are assumed to have uniform semantics (fragile) and
collision needs to be avoided with all objects F°°"¢". Under
this assumption, metric features (position/velocity) are suffi-
cient for identifying relevant objects. Thus, we compare the
two object selection methods, Static-kNN and Dynamic-kNN,
that rely purely on metric properties of objects. Fig. [5] presents
success rates of pretrained policies 73", for different choices
of N, tested in environments with varying complexity (V).
In settings where Nyej = IV, the policy ™ is a privileged
policy with full-state information.

From Fig. 5| we observe that Dynamic-kNN consistently
outperforms Static-kNN, as expected. This is because, as
the task progresses and the cereal box is slid along the
table, the set of relevant objects (those to avoid collision
with) changes, something that Static-kNN fails to account
for. We further note that, as N increases, the performance of
the privileged policy 7"\, suffers, and choosing a policy
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trained with smaller state space my""Zy and considering a

subset of safety-critical objects becomes more beneficial. This
can be especially noted for scenarios with N = 5,6 where
Ta—y performs comparable to, and 7", outperforms, the
privileged policy. It is interesting to note that, for a fixed
N we do not necessarily observe a consistent increase in
performance as we choose policies with increasing capacity
Nie1. This is because there is a trade off between complexity
and representation capacity of 7. Policies trained with
higher NV, have higher representation capacity and avoid
contacts with more objects, however, since these policies are
trained in more complex environments, with the same model
size, they are less performant.

We further breakdown the failure cases for Static-kNN and
Dynamic-kNN in Fig.[6] In this scenario, there are three failure
modes: 1) top cereal box leaving safety set or out of bound
(O0OB), 2) collision with unselected objects (objects deemed
irrelevant), and 3) collision with selected objects (objects
deemed relevant). We observe that Dynamic-kNN has signifi-
cantly fewer collisions with objects that it deemed irrelevant,
as compared to Static-kNN, demonstrating its capability to
select safety-critical objects with higher accuracy.

Results: VLM vs. proximity-based dimensionality reduc-
tion methods with metric-semantic safety constraints. We
populate the environment with a collection of fragile as well
as durable objects. Thus, the failure set for this setting is
defined such that collision should be avoided with the fragile
objects while other durable objects can be freely interacted
with. Hence, only a subset of objects are safety critical and
others can be ignored. We compare the performance of Static-
kNN, Dynamic-kNN and Dynamic-VLM for selecting relevant
safety critical objects. We also compare against a privileged
selection heuristic that always chooses the k-nearest fragile
objects. Policy 7™ is executed and, as a reminder, since it
is trained considering F°°™°, it will try to avoid all selected
objects regardless of their semantic properties. In Table [I, we
report success rates (%) in an environment with five objects
in clutter (N=5) and we choose two relevant objects N = 2.
We note that Dynamic-VLM outperforms both Static-kNN and
Dynamic-kNN. This is because Static-kNN and Dynamic-kNN
only consider the metric features of objects and will always
choose the k-nearest objects regardless of their semantic
features. Dynamic-VLM, on the other hand, considers both
metric and semantic features and prioritizes selecting fragile
objects since they are safety critical. The privileged selection
mechanism performs the best as it always selects the nearest
fragile objects. Naturally, performance across all techniques
worsens as the number of fragile objects in the scene increases.

C. VLMs can infer semantic safety criteria from semantic
observations and task description.

Methods. @ We compare the performance of different
dimensionality reduction techniques in a more complex
setting, where each object can have different semantic
properties, fragile, soft, or durable, and hence a different

Table I: Comparison of dimensionality reduction techniques
in environments with semantically different objects (fragile
and durable) using a pretrained conservative policy 7",
Total number of objects N = 5. Number of selected objects
Niep = 2. Table reports success rate (%).

Object semantic types Static-kNN Dynamic-kNN Dynamic-VLM Privileged selection

2 fragile, 3 durable 61.3 66.8 80.8 91.6
3 fragile, 2 durable 46.9 54.8 63.0 69.1

Table II: Comparison of in scenes with semantically different
objects (fragile, soft, durable). Table reports success rate (%).

Object selection
Constraint selection

Static-kNN  Dynamic-kNN Dynamic-VLM Dynamic-kNN
Conservative  Conservative ~ ContraintVLM  ContraintVLM

2 fragile, 2 soft, 1 durable (N = 2) 453 53.6 572 51.8
2 fragile, 2 soft, 2 durable (N = 3) 44.7 49.2 533 50.0

constraint type. The failure set F consists of states
that satisfy, 1) dynamic interaction constraint gayn, 2) no
contact constraint with fragile objects gnaa, 3) soft contact
constraint with soft objects gsn and free collisions with
durable objects. We train policy 77}‘\1,11_0[ for all combinations
of constraints mentioned above for each cluttered object in
the scene. We parameterize the policy with the semantic
properties of objects from which the constraint type can
be inferred. Specifically, the object state is appended
with an integer corresponding to its semantic property
(fragile = 0, soft = 0, or durable = 2). During execution,
the constraint types are inferred using ConstraintVLM
which selects from a set of semantic constraint types
{<no contact>,<soft contact>,<any contact>}
for each object. We compare against approaches where Static-
kNN and Dynamic-kNN are used for relevant object selection,
however, the constraint types are manually designed and
assumed to be conservative, i.e. <no contact> for all
objects.

Results.  Table shows the performance when using
Constraint-VLM for constraint selection for different choices
of object selection methods. We observe that using Constraint-
VLM for constraint selection and Dynamic-VLM for object
selection achieves the highest performance since VLMs are
able to better capture the semantic properties of relevant
objects. Moreover, when assuming ’conservative’ constraints
for all objects, the policy follows suboptimal paths to avoid
all nearby objects, leading to low task completion rates. To
quantitatively analyze the proficiency of VLMs at identifying
appropriate constraint types, based on the semantic properties
of objects, we construct a confusion matrix. Table |l1I| shows

Table III: Confusion matrix for constraint type prediction using
ConstraintVLM. Percentage of total trials (%).

Constraint types no contact soft contact any contact

no contact (GT) 99.0 1.0 0.0
soft contact (GT) 25.2 41.5 0.0
any contact (GT) 0 0 100




Table IV: Constraint type prediction using ConstraintVLM for
different objects. Percentage of total trials (%).

Object no contact  soft contact  any contact
toy squirrel 0.0 0.0 100.0
toy sheep 0.0 0.0 100.0
toy android 0.0 0.0 100.0
red mug 98.5 1.5 0.0
blue mug 98.5 1.5 0.0
porcelain mug 100.0 0.0 0.0
supplement 6.6 93.4 0.0
plant pot 73.0 27.0 0.0

the percentage by which each ground truth constraint is
correctly identified. We note that <no contact (fragile) and
<any contact (durable) constraints are identified with high
reliability, while soft objects can be confused to be fragile.
Furthermore, table shows constraint type predictions for
different objects. Both tables are constructed using 200 trails.
We note that for fragile objects like mugs, ContraintVLM
predicts no contact constraints, while for durable objects
like toys it predicts any contact constraints, while semi-
fragile objects are allowed soft contacts. This aligns well with
our ground truth treatment of these objects.

VII. LIMITATIONS

Our approach has several limitations. First, the number of
relevant objects for a task must be predetermined and is kept
fixed during deployment, reducing adaptability. Future work
will explore dynamically changing N, as the task proceeds.
Training parameterized policies for all possible constraint
combinations in an RL setting is computationally expensive,
requiring high-fidelity simulation for control policy synthesis
and sim-to-real transfer for real-world deployment. Another
challenge is the slow inference of Vision-Language Models
(VLMs), making them unsuitable for high-frequency real-
world applications due to latency, certification, and reliability
concerns. To address this, we plan to use language models at
lower frequencies to update relevant objects and constraints.
Finally, our method assumes access to ground-truth object
states, and future work will investigate leveraging 3D semantic
representations to mitigate this reliance.

VIII. CONCLUSION

We propose a scalable method for learning safe policies
for dynamic and interactive manipulation in cluttered environ-
ments using reach-avoid reinforcement learning. Our approach
includes an offline training pipeline that focuses on a reduced
set of objects while incorporating diverse task and safety
constraints. During execution, we employ heuristic-based and
vision-language based techniques to dynamically identify rele-
vant objects and constraints based on both metric and semantic
properties. Simulation results on a complex manipulation
task demonstrate that task- and safety-aware dimensionality
reduction enables efficient policy learning while preserving

safety guarantees, supporting deployment in unstructured en-
vironments.
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APPENDIX

A. Training details

Table V: Training hyperparameters

Hyperparameter Value
Batch size 200
# Training steps 3M
Learning rate 0.001
Max. episode length 300
Optimizer AdamW
Replay buffer size 100k
Discount factor 0.99
Polyak 0.995
Relative velocity threshold 1.0 m/s
Collision threshold 0.01 m

B. Prompt for relevant object selection

Object selection prompt: You are an excellent safe planning agent for dynamic tasks. You are given a task description
and a sequence of images showing the trajectory followed by the robot and the objects so far, the last image shows the
current state. The objects are highlighted using bounding boxes with labels <object id>: <object name>. The
past trajectory of the robot can be inferred from the sequence of images and also from the black arrow showing the past
path followed by the robot end effector. Important note: the black line with the arrow shows the past trajectory already
followed by the end-effector in the past few time steps, not the planned future trajectory. Expecting that the robot will
continue along the path, try to predict the future trajectory and choose relevant objects in the future: You need to do
this based on two criteria: proximity and safety. Under the ‘proximity’ criteria you consider the objects which are most
likely to come in contact with the top cereal box or end-effector if the robot continues along its its trajectory in the
future. The object list provided to you is sorted in increasing order of the distance between the end-effector and the
object. For example, object with index O will be closest to the end-effector, object with index 1 will be further away
and so on. Use this list to help with the proximity criteria. Under the ‘safety’ criteria, among the objects that might
come in contact in the near future, choose objects which are more fragile/safety critical, and coming in contact with
them is more risky. Provide explanation for why you are choosing these objects (proximity vs safety) and why they
are relevant in the near future. In ‘image_description’ briefly describe 1) brief description of the sequence of images,
2) describe the trajectory followed by the robot (black arrow) so far 3) describe what the future trajectory will look
like 4) which objects might likely come in contact with the gripper in the future.

Task prompt: A robot arm needs to slide the white cereal box from under the blue cereal box and to the right, without
damaging other objects along the way.

\

C. Prompt for constraint selection

Constraint selection prompt: You are an excellent safe planning agent for dynamic tasks. You are given a task
description and a list of objects on a table. You need to decide the safe interaction type for each object from the list
of constraint types. Here the description of the constraint types: ‘no_contact’ implies that there should absolutely be
no contact with a certain object. ‘soft_contact’ implies that you can softly interact with that object, push it softly,
etc. ‘any_contact’ implies that any kind of interaction including aggressive impact is allowed. Some hints on how to
decide on the constraint type for an object: If an object is soft or made of durable material, and softly pushing it or
moving it without toppling it is okay, ‘soft_contact’ can be allowed with that object. If an object is very durable, and
pushing it aggressively will not damage it, ‘any_contact’ can be allowed with that object. If an object is fragile, and
contacting it might damage it, ‘no_contact’ should be allowed with that object. Usually objects such as cups, wine
glasses, bowls, electronics, etc are considered fragile and should be ‘no_contact’. Plastic objects such as bottles, plastic
cans, tubes can be allowed ‘soft_contact’. Soft and non-critical objects such as toys, clothing, etc are soft and can be
ignored and allowed ‘any_contact’. Do not respond on the basis of whether given the task, contact will be needed or
not, but respond based on what kind of interaction is safe with a particular object regardless of the task. Provide brief
explanation, for choosing a specific constraint type for an object.

Task prompt: A robot arm needs to slide the white cereal box from under the blue cereal box and to the right, without
damaging other objects along the way.
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